PPP LOSS FROM RUNOFF AND DRAINAGE

Per-Erik Mellander Teagasc, Johnstown Castle Environmental Research Centre, Wexford, Ireland

INTRODUCTION

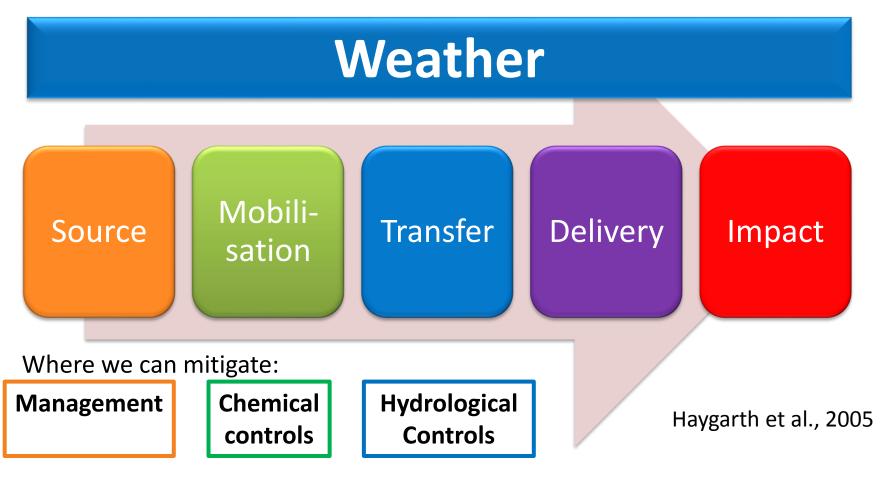
WATERPROTECT

On-going projects in Ireland

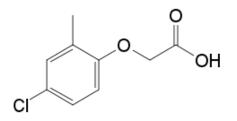
- WATERPROTECT
- DIFFUSE TOOLS
- Source To Tap
- FAIRWAY

INTRODUCTION

- MCPA is a widely used herbicide in Ireland
- Diffuse transfer mechanisms include incidental loss via drift, surface runoff, leaching and groundwater flow
- Large spatial distribution of MCPA found in rivers exceeding drinking water standards
- Soil and sediments high in organic carbon and low in oxygen poses a previously unrecognised risk for MPCA in the Irish environment
- There is a need for a better understanding of the physical/chemical mechanisms at the catchment scale



INTRODUCTION


"Transfer Continuum"

Poses challenges for mitigation strategies!

Few monitoring studies targeted at understanding catchment-scale processes

- I. Does not absorb strongly to soils (500 to 1000 times lower adsorption coefficient than some other pesticides)
- II. Soluble
- Highly mobile and susceptible to transport!

MOBILISATION - CHEMICAL CONTROLS

WATERPROTECT

- Breakdown is largely controlled by :
 - i) oxygen availability
 - ii) temperature
 - iii) pH
 - iv) nutrient content
- Soil type important
- Aerobic conditions = quick degradation (t_{1/2} ~ 10 days)
- Anaerobic conditions = slow degradation ($t_{1/2} \sim 2000$ days)
- Potential for legacy stores in saturated soils
- Breakdown produces metabolites

4C2MP was found in 17% of groundwater samples (McManus et al., 2017)

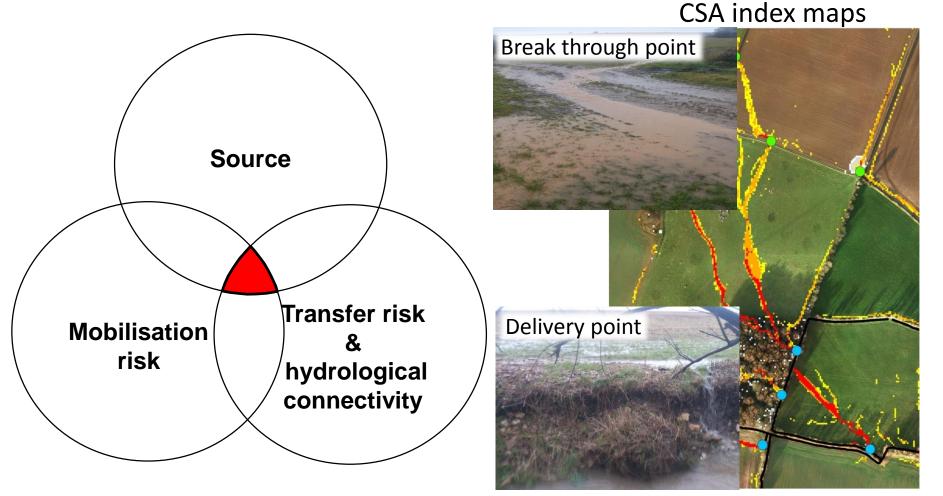
 Need to understand the influence of soil/subsoil/bedrock properties

TRANSFER - HYDROLOGICAL CONTROLS

37%

Where does water go after it has rained?

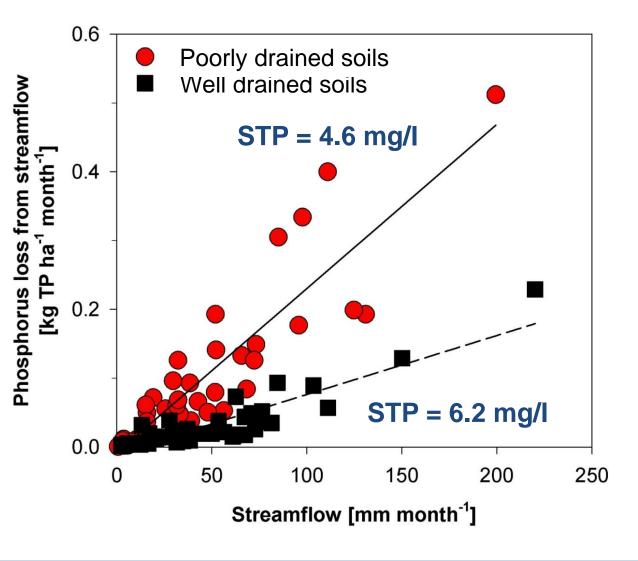
1021 mm 47%


16%

- Vegetation
- Topography
- Soil/subsoil drainage
- Bedrock permeability
- Landscape features
- Land management

TRANSFER – SURFACE PATHWAYS

Critical Source Areas (CSA's)

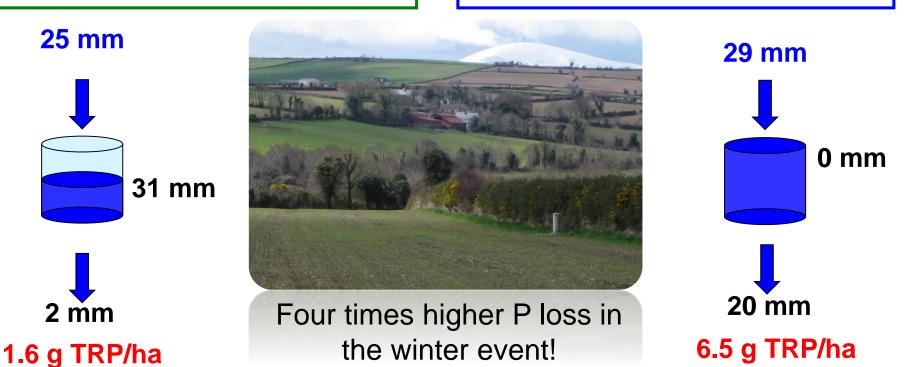

Thomas et al., AEE, 2016

TRANSFER – CATCHMENT SCALE

- Flow controls overrides source pressure
- Larger inter-annual P loss than between catchments
- One size does not fit all!

Mellander et al., HP 2015

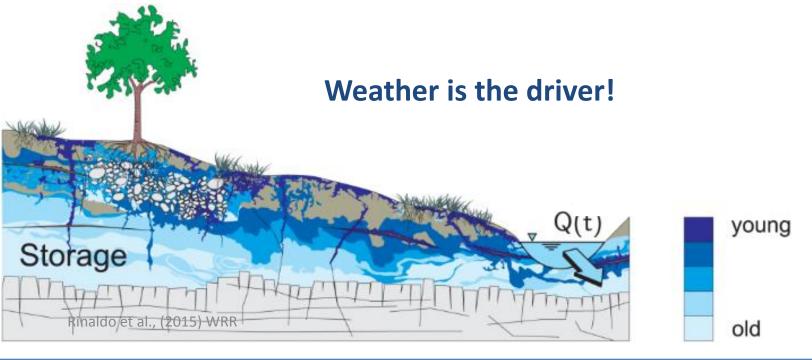
TRANSFER - TEMPORAL



Summer event (Jun 2012)

- SMD = 31 mm
- Rainfall = 25 mm
- Stream flow = 2 mm
- P loss = 1.6 g TRP/ha

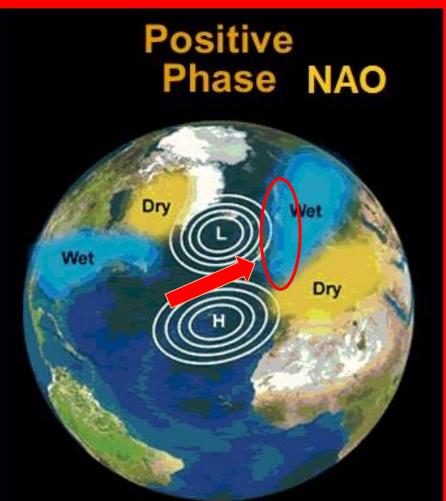
Winter event (Nov 2012)


- SMD = 0 mm
- Rainfall = 29 mm
- Stream flow = 20 mm
- P loss = 6.5 g TRP/ha

Soil moisture conditions & weather forecast need consideration before application

TRANSFER - MIX

- Heterogeneous landscape rivers consists of water of different ages
- MCPA can be:
 - i. rapidly mobilised from rain events occurring just after application
 - ii. leached to anaerobic conditions in slow moving groundwater
 - iii. reside in anaerobic stores (soil aggregates and sediments).

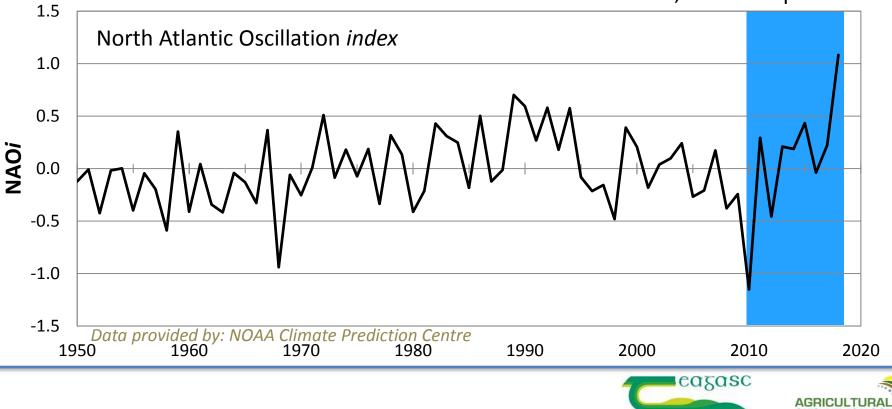

WEATHER

Large-scale weather systems - North Atlantic Oscillation

Negative Phase NAO Wet Dry Dry Wet

http://www.windows.ucar.edu/

http://www.windows.ucar.edu/


WEATHER

- Warmer/drier summers and larger rain events in winter
- Water quality parameters in small river catchments were found to be correlated to decadal changes in oceanic-scale weather systems
- Response different for different catchment typologies.

Mellander et al., Nat Sci Rep 2018

ICULTURE AND FOOD DEVELOPMENT AU

WEATHER EXTREMES

MITIGATION MEASURES

"Decision Support Tree" for BMP's adapted from TOPPS

Risk by infiltration and transfer

Proximity to Surface Water	Permeability of the Topsoil		Steepness of Slope		Risk Class & Scenario
Field Adjacent to Water Body	Low		Steep (>5 %)		17
			Moderate (2-5 %)		16
			Shallow (< 2 %)		15
	Moderate		Steep (>5 %)		14
			Moderate (2-5 %)		
			Shallow (< 2 %)		
	High		Steep (>5 %)		13
			Moderate (2-5 %)		
			Shallow (< 2 %)		
Field Adjacent to Water Body	Transfer of run-off downhill	Yes	Run-off reaches water body?	Yes	Т 3
				No	T 2
		No			τı
I - infiltration T- transfer					

MITIGATION MEASURES

Risk Class and Scenario	Measures			
	In- field measures (necessary)	BMP: 8, 9, 10, 49, 50, 51, 52, 67, 68, 69		
7, T 3, 4 / 6, S 4	Edge-of-field measures (necessary)	BMP: 11, 47, 54, 55, 66		
	Landscape measures (necessary)	BMP: 12, 47, 53, 55		
I 5, I 3, S 3 / SD 3	In- field measures (necessary)	BMP: 8, 9, 10, 49, 50, 51, 52, 67, 68, 69		
	Edge-of-field measures (necessary)	BMP: 11, 47, 54, 55, 66		
	Landscape measures (usefull)	BMP: 12, 47, 53, 55		
I 2, S 2 / SD 2	In- field measures (necessary)	BMP: 8, 9, 10, 49, 50, 51, 52, 67, 68, 69		
	Edge-of-field measures (usefull)	BMP: 11, 47, 54, 55, 66		
1, S 1 / SD 1, T1, T 2	In- field measures (necessary)	BMP: 8, 9, 10, 49, 50, 51, 52, 67, 68, 69		

S=saturation; T=transfer; SD=saturation by drainage water; I=infiltration

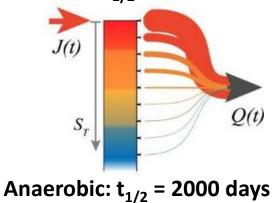
- Must avoid risky sites and risky times when applying PPPs
- Soil moisture conditions and weather forecast needs to be considerated before application – decision support tools

Need for more theoretical understanding of transport/risk at the catchment scale

GAVAN MCGRATH

• A Simple Transport Model

MODELLING


Concentration in River Applied Concentration Distribution of travel times

$$C_Q(t) = \int_{-\infty}^t C_{in}(t_i) p_Q(t - t_i, t) dt_i$$

Considers:

- Spatial and temporal rain statistics
- Biodegradation rate decreasing more quickly with solute age

Aerobic: $t_{1/2} = 20$ days

WATERPRO

McGrath et al., STOTEN (2019)

SUMMARY

- MCPA is highly mobile and susceptible to transport
- Soil type, topography and management are important for mobilisation, transfer and hydrological connectivity
- Climate is a key driver
- Fast flow during rainfall/drainage events occurring soon after application is likely the dominant mechanism for transport (*e.g.* McGrath, 2008)
- Transfer from legacy
- Pesticide transfer models are useful to:
 - i. understand the risks at the catchment scale
 - ii. interpret monitoring data
 - iii. extrapolate our findings spatially and tempoarily
 - iv. direct mitigation measures.

CONCLUSIONS

- Efficient mitigation measures:
 - i. hinders mobilisation, transfer and hydrological connectivity
 - ii. considers soil moisture conditions and weather forecast before application
 - iii. avoids risky sites and risky times
- We need to better understand the mechanisms, drivers and controls of mobilisation and transfer processes within the agricultural landscape

- I. Collating existing data
- II. Spatial overview: Surveying and sampling of private groundwater wells
- III. Seasonal overview: monitoring of MCPA in rivers using *passive sampling*
- IV. Flow events: field-scale event based storm sampling using *auto samplers*

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No. 727450

CHRIS FENNELL

SPATIAL -WELL SAMPLING

- Sampling and surveying of householders wells
- Analysis:
 - i. Temp, EC, pH, ORP, DO
 - ii. nutrients, major/minor ions, metals
 - iii. 17 acid herbicide parentcompounds (quantitative)
 - iv. Screening (presence/absence)>2000 compounds

TEMPORAL - PASSIVE SAMPLING CHRIS FENNELL

- Sampling technique based on the free flow of analytes
 - i. Screening approach (presence/absence)
 - Time weighted average (TWA) concentrations via laboratory calibrations (identify compound specific uptake rate)
- Effectively concentrate pollutants compared to spot sampling lower analytical detection limits

TEMPORAL - PASSIVE SAMPLING CHRIS FENNELL

- First deployment at ACP Wexford catchment outlets on 06/11/2018
- To be continued for one year with concurrent grab sampling

EVENT SAMPLING

